Interatomic Coulombic Decay

Interatomic Coulombic Decay (ICD)[1] is a general, fundamental property of atoms and molecules which have neighbors. The Interatomic (Intermolecular) Coulombic Decay is a very efficient interatomic (intermolecular) relaxation process of an electronically excited atom or molecule embedded in an environment. Without the environment the process cannot take place. Until now it has been mainly demonstrated for atomic and molecular clusters, independently of whether they are of van-der-Waals or hydrogen bonded type.

The nature of the process can be depicted as follows: Consider a cluster with two subunits, A and B. Suppose an inner-valence electron is removed from subunit A. If the resulting (ionized) state is higher in energy than the double ionization threshold of subunit A then an intraatomic (intramolecular) process (autoionization, in the case of core ionization Auger decay) sets in. Even though the excitation is energetically not higher than the double ionization threshold of subunit A itself, it may be higher than the double ionization threshold of the cluster which is lowered due to charge separation. If this is the case, an interatomic (intermolecular) process sets in which is called ICD. During the ICD the excess energy of subunit A is utilized to remove (due to electronic correlation) an outer-valence electron from subunit B. As a result a doubly ionized cluster is formed with a single positive charge on A and B. Thus, charge separation in the final state is a fingerprint of ICD. As a consequence of the charge separation the cluster typically breaks apart via Coulomb explosion.

ICD is characterized by its decay rate or the lifetime of the excited state. The decay rate depends on the interatomic (intermolecular) distance of A and B and its dependence allows to draw conclusions on the mechanism of ICD.[2] Particularly important is the determination of the kinetic energy spectrum of the electron emitted from subunit B which is denoted as ICD electron.[3] ICD electrons are often measured in ICD experiments.[4][5][6] Typically, ICD takes place on the femto second time scale,[7][8][9] many orders of magnitude faster than those of the competing photon emission and other relaxation processes.

Contents

ICD in water

Very recently, ICD has been identified to be an additional source of low energy electrons in water.[10][11] There, ICD is faster than the competing proton transfer that is usually the prominent pathway in the case of electronic excitation of water clusters. The response of condensed water to electronic excitations is of utmost importance for biological systems. For instance, it was shown in experiments that low energy electrons do affect constituents of DNA effectively. Furthermore, ICD was reported after core-electron excitations of hydroxide in dissolved water.[12]

Related Processes

Interatomic (Intermolecular) processes do not only occur after ionization as described above. Independent of what kind of electronic excitation is at hand, an interatomic (intermolecular) process can set in if an atom or molecule is in a state energetically higher than the ionization threshold of other atoms or molecules in the neighborhood. The following ICD related processes, which were for convenience considered below for clusters, are known:

References

  1. ^ L.S. Cederbaum, J. Zobeley, and F. Tarantelli (1997). "Giant Intermolecular Decay and Fragmentation of Clusters". Phys. Rev. Lett. 79 (24): 4778–4781. Bibcode 1997PhRvL..79.4778C. doi:10.1103/PhysRevLett.79.4778. 
  2. ^ V. Averbukh, I.B. Müller, and L.S. Cederbaum (2004). "Mechanism of Interatomic Coulombic Decay in Clusters". Phys. Rev. Lett. 93 (26): 263002–263005. Bibcode 2004PhRvL..93z3002A. doi:10.1103/PhysRevLett.93.263002. 
  3. ^ R. Santra, J. Zobeley, L.S. Cederbaum, and N. Moiseyev (2000). "Interatomic coulombic decay in van der waals clusters and impact of nuclear motion". Phys. Rev. Lett. 85 (21): 4490–4493. Bibcode 2000PhRvL..85.4490S. doi:10.1103/PhysRevLett.85.4490. PMID 11082578. 
  4. ^ S. Marburger, O. Kugeler, U. Hergenhahn, and T. Möller (2003). "Experimental Evidence for Interatomic Coulombic Decay in Ne Clusters". Phys. Rev. Lett. 90 (20): 203401–203404. Bibcode 2003PhRvL..90t3401M. doi:10.1103/PhysRevLett.90.203401. 
  5. ^ T. Jahnke, A. Czasch, M.S. Schöffler, S. Schössler, A. Knapp, M. Käsz, J. Titze, C. Wimmer, K. Kreidi, R.E. Grisenti, A. Staudte, O. Jagutzki, U. Hergenhahn, H. Schmidt-Böcking, and R. Dörner (2004). "Experimental Observation of Interatomic Coulombic Decay in Neon Dimers". Phys. Rev. Lett. 93 (16): 163401–163404. Bibcode 2004PhRvL..93p3401J. doi:10.1103/PhysRevLett.93.163401. PMID 15524986. 
  6. ^ G. Öhrwall, M. Tchaplyguine, M. Lundwall, R. Feifel, H. Bergersen, T. Rander, A. Lindblad, J. Schulz, S. Peredkov, S. Barth, S. Marburger, U. Hergenhahn, S. Svensson, and O. Björneholm (2004). "Femtosecond Interatomic Coulombic Decay in Free Neon Clusters: Large Lifetime Differences between Surface and Bulk". Phys. Rev. Lett. 93 (17): 173401–173404. Bibcode 2004PhRvL..93q3401O. doi:10.1103/PhysRevLett.93.173401. PMID 15525075. 
  7. ^ R. Santra, J. Zobeley, and L.S. Cederbaum (2001). "Electronic decay of valence holes in clusters and condensed matter". Phys. Rev. B 64 (24): 245104. doi:10.1103/PhysRevB.64.245104. 
  8. ^ V. Averbukh and L.S. Cederbaum (2006). "Interatomic Electronic Decay in Endohedral Fullerenes". Phys. Rev. Lett. 96 (5): 053401–053404. Bibcode 2006PhRvL..96e3401A. doi:10.1103/PhysRevLett.96.053401. PMID 16486927. 
  9. ^ A.I. Kuleff and L.S. Cederbaum (2007). "Tracing ultrafast interatomic electronic decay processes in real time and space". Phys. Rev. Lett. 98 (8): 083201. Bibcode 2007PhRvL..98h3201K. doi:10.1103/PhysRevLett.98.083201. PMID 17359096. 
  10. ^ T. Jahnke, H. Sann, T. Havermeier, K. Kreidi, C. Stuck, M. Meckel, M. Schöffler, N. Neumann, R. Wallauer, S. Voss, A. Czasch, O. Jagutzki, A. Malakzadeh, F. Afaneh, Th. Weber, H. Schmidt-Böcking, and R. Dörner (2010). "Ultrafast energy transfer between water molecules". Nature Physics 6 (2): 139–142. doi:10.1038/nphys1498. 
  11. ^ M. Mucke, M. Braune, S. Barth, M. Förstel, T. Lischke, V. Ulrich, T. Arion, U. Becker, A Bradshaw, and U. Hergenhahn (2010). "A hitherto unrecognized source of low-energy electrons in water". Nature Physics 6 (2): 143–146. doi:10.1038/nphys1500. 
  12. ^ E.F. Aziz, N. Ottosson, M. Faubel, I.V. Hertel, and B. Winter (2008). "Interaction between liquid water and hydroxide revealed by core-hole de-excitation". Nature 455 (7209): 89–91. doi:10.1038/nature07252. PMID 18769437. 
  13. ^ S. Barth, S. Joshi, S. Marburger, V. Ulrich, A. Lindblad, G. Öhrwall, O. Björneholm, and U. Hergenhahn (2005). "Observation of resonant interatomic coulombic decay in Ne clusters". J. Chem. Phys. 122 (24): 241102. doi:10.1063/1.1937395. PMID 16035737. 
  14. ^ T. Aoto, K. Ito, Y. Hikosaka, E. Shigemasa, F. Penent, and P. Lablanquie (2006). "Properties of Resonant Interatomic Coulombic Decay in Ne Dimers". Phys. Rev. Lett. 97 (24): 243401–243404. Bibcode 2006PhRvL..97x3401A. doi:10.1103/PhysRevLett.97.243401. PMID 17280282. 
  15. ^ S. Kopelke, K. Gokhberg, L.S. Cederbaum, and V. Averbukh (2009). "Calculation of resonant interatomic Coulombic decay widths of inner-valence-excited states delocalized due to inversion symmetry". J. Chem. Phys. 130 (14): 144103. doi:10.1063/1.3109988. PMID 19368425. 
  16. ^ R. Santra and L.S. Cederbaum (2003). "Coulombic energy transfer and triple ionization in clusters". Phys. Rev. Lett. 90 (15): 153401. Bibcode 2003PhRvL..90o3401S. doi:10.1103/PhysRevLett.90.153401. PMID 12732036. 
  17. ^ Y. Morishita, X.-J. Liu, N. Saito, T. Lischke, M. Kato, G. Prümper, M. Oura, H. Yamaoka, Y. Tamenori, I.H. Suzuki, and K. Ueda (2006). "Experimental Evidence of Interatomic Coulombic Decay from the Auger Final States in Argon Dimers". Phys. Rev. Lett. 96 (24): 243402–243405. Bibcode 2006PhRvL..96x3402M. doi:10.1103/PhysRevLett.96.243402. PMID 16907240. 
  18. ^ K. Gokhberg , A. B. Trofimov, T. Sommerfeld, and L. S. Cederbaum (2005). "Ionization of metal atoms following valence-excitation of neighbouring molecules". Europhys. Lett 72 (2): 228. doi:10.1209/epl/i2005-10227-7. 
  19. ^ J. Zobeley , R. Santra and L. S. Cederbaum (2001). "Electronic decay in weakly bound heteroclusters: Energy transfer versus electron transfer". J. Chem. Phys. 115 (11): 5076. doi:10.1063/1.1395555. 
  20. ^ K. Sakai , S. Stoychev , T. Ouchi , I. Higuchi , M. Schöffler , T. Mazza , H. Fukuzawa , K. Nagaya , M. Yao , Y. Tamenori , A. I. Kuleff , N. Saito and K. Ueda (2011). "Electron-Transfer-Mediated Decay and Interatomic Coulombic Decay from the Triply Ionized States in Argon Dimers". Phys. Rev. Lett. 106 (3): 033401. doi:10.1103/PhysRevLett.106.033401. PMID 21405272. 
  21. ^ M. Förstel , M. Mucke , T. Arion , A. M. Bradshaw and U. Hergenhahn (2011). "Autoionization Mediated by Electron Transfer". Phys. Rev. Lett. 106 (3): 033402. doi:10.1103/PhysRevLett.106.033402. PMID 21405273. 

External links